Structural Engineering & Structural Mechanics

Analysis, design & protection of the built environment through comprehensive understanding of structural behavior and associated materials technologies.


Research Groups

Computational Cement Composites
Fiber Reinforced Polymer (FRP) composites
Fracture Mechanics
Element Free and Extended FEM
Structural/Earthquake Engineering


Barbato, Michele Nonlinear structural analysis • structural dynamics • structural reliability • stochastic dynamics • finite element methods • sustainable construction materials • performance-based engineering • climatic adaptation
Bolander, John E.  Cement-based composites • Nondestructive testing • Material and structural design optimization
Chai, Rob Y.H.  Earthquake engineering with emphasis on structural design • Large-scale structural testing

Cheng Lijuan (Dawn)

Infrastructure design and renewal using Fiber Reinforced Polymer composite materials
Dafalias, Yannis F.  Development and implementation of constitutive models for engineering materials and biomaterials
Kanvinde, Amit Seismic response of steel structures with an emphasis on fracture and fatigue • Large scale experimentation • Nonlinear and multiscale structural and component simulation
Kunnath, Sashi Structural dynamics • Performance-based seismic engineering • Inelastic modeling of structural systems
Maroney, Brian H. Dynamic soil-foundation-structure interaction of bridge systems • Transportation system reliability and cost efficiency before, during, and following earthquakes • Reliable bridge system design
Miller, Sabbie Designing sustainable infrastructure materials • Bio-based composites • Integration of sustainability into structural design • Durability of civil engineering materials
Rashid, Mark M. Computational solid mechanics • Large-deformation finite element methodology
Sukumar, N. Computational solid mechanics •  Finite elements and meshfree methods • Fracture mechanics • Computational geometry • Convex optimization • Parallel computing

Back to Top



Structural engineering and structural mechanics courses are supported by courses in the Chemical Engineering and Materials Science Department, the Mechanical and Aeronautical Engineering Department, and the Department of Mathematics. Courses include:

  • ECI 201 – Introduction to Theory of Elasticity
  • ECI 203 – Inelastic Behavior of Solids
  • ECI 205 – Continuum Mechanics
  • ECI 206 – Fracture Mechanics
  • ECI 211 – Advanced Matrix Structural Analysis
  • ECI 212A – Finite Element Procedures in Applied Mechanics
  • ECI 212B – Finite Elements: Application to Linear and Nonlinear Structural Mechanics Problems
  • ECI 213 – Analysis of Structures Subjected to Dynamic Loads
  • ECI 221 – Theory of Plates and Introduction to Shells
  • ECI 232 – Advanced Topics in Concrete Structures
  • ECI 233 – Advanced Design of Steel Structures
  • ECI 234 – Prestressed Concrete
  • ECI 235 – Cement Composites
  • ECI 238 – Performance-Based Seismic Engineering
  • ECI 289 – Bridge Engineering

Graduate seminars and lectures by visiting scholars supplement formal courses.

(Click here for catalog description)


Back to Top


Graduate Program in Structural Engineering & Mechanics

Structural engineering is the science and art of designing, analyzing and constructing buildings, bridges and other structures to safely resist various forces and conditions. Through analysis and testing of structures and their components, structural engineers advance the understanding of structural response to seismic, wind, gravity and other loads, to design more functional and economical structures. Structural engineering overlaps strongly with structural mechanics, which focuses on the application of fundamental concepts in solid mechanics to problems in structural engineering, and especially on the mathematical modeling of the behavior of both traditional and advanced structural materials. Often, the computational tools used by structural engineers draw heavily from structural mechanics.

At UC Davis, the Structural Engineering and Structural Mechanics (SESM) Group is heavily engaged in both computational and experimental approaches to address issues in structural and solid mechanics. Ongoing research in the SESM group addresses structural and non-structural materials and systems, and encompasses virtually all relevant size-scales including micro-structural, structural component, and structural system levels.

The SESM group at UC Davis is widely recognized worldwide as an international leader in the area of structural and computational mechanics, and has had significant academic and professional impact far beyond the country’s borders. Moreover, students and researchers in the group come from all corners of the world.

In the computational area, recent research has included the development and application of advanced finite element and constitutive modeling techniques, cumulative damage assessment of structures, characterization of structural behavior under earthquake loading; centrifuge modeling studies for soils and soil/structure interaction. Other areas of research include computer-aided design; development of ductile structural systems and retrofit of non-ductile systems for enhanced seismic performance; non-destructive evaluation of material properties and computational modeling techniques for fracture and fatigue in steel and concrete structures.

The computational and experimental efforts of the group often complement each other, and recent large scale experimental projects and analytical studies have focused on a variety of problems, including

  • the response of approach slabs in highway bridges

  • the behavior of extended pile-shafts subjected to earthquake loads

  • the seismic behavior of steel braced and moment frames, strength of welded connections

  • low cycle fatigue and buckling of reinforcing bars in bridge piers

  • development of material and performance models for degrading concrete structures

  • the influence of vertical ground motions on highway bridges

The group also enjoys a strong collaborative relationship with the Geotechnical Engineering Group. Research projects of common interest to both groups include geotechnical-centrifuge studies of soils and dynamic soil-structure interaction; constitutive modeling of soils and reinforced earth, and response of sites to seismic phenomena.

The SESM group is well supported through numerous research grants from federal and state agencies (including the National Science Foundation, California Department of Transportation, American Institute of Steel Construction, the Pacific Earthquake Engineering Research center, among others) and is constantly in the process of recruiting high-caliber graduate students at the masters and doctoral levels. In addition to research assistantship positions, various other forms of funding are typically available (based on the candidate’s qualifications) to support graduate students through their research and education in the SESM group. Outlined below are the specifics of various research areas and faculty interests.

Back to Top